MATEMATICA I

Michele CIARLETTA MATEMATICA I

0612100001
DIPARTIMENTO DI INGEGNERIA CIVILE
CORSO DI LAUREA
INGEGNERIA CIVILE
2016/2017

OBBLIGATORIO
ANNO CORSO 1
ANNO ORDINAMENTO 2012
PRIMO SEMESTRE
CFUOREATTIVITÀ
990LEZIONE
Obiettivi
RISULTATI DI APPRENDIMENTO PREVISTI E COMPETENZA DA ACQUISIRE:
IL CORSO HA COME SCOPO PRINCIPALE QUELLO DI APPRENDERE LE CONOSCENZE MATEMATICHE DI BASE RELATIVE ALLE FUNZIONI REALI DI UNA VARIABILE E DI FORNIRE E SVILUPPARE STRUMENTI UTILI PER UN APPROCCIO SCIENTIFICO AI PROBLEMI E FENOMENI CHE LO STUDENTE INCONTRERÀ NEL PROSEGUIMENTO DEI SUOI STUDI.

CONOSCENZE E CAPACITÀ DI COMPRENSIONE:
LO STUDENTE DEVE CONOSCERE GLI ELEMENTI FONDAMENTALI DELL'ANALISI MATEMATICA, IN PARTICOLARE GLI INSIEMI NUMERICI, LE FUNZIONI REALI, LE SUCCESSIONI NUMERICHE, I LIMITI DI UNA FUNZIONE, LE FUNZIONI CONTINUE, LA DERIVATA DI UNA FUNZIONE, I TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE, LO STUDIO DEL GRAFICO DI UNA FUNZIONE, GLI INTEGRALI DELLE FUNZIONI DI UNA VARIABILE E LE SERIE NUMERICHE.

CAPACITÀ DI APPLICARE CONOSCENZA E COMPRENSIONE:
LO STUDENTE DEVE SAPER SVILUPPARE IN MODO COERENTE E RIGOROSO UN RAGIONAMENTO MATEMATICO. SAPER APPLICARE I TEOREMI E LE REGOLE STUDIATE ALLA RISOLUZIONE DI PROBLEMI. SAPER EFFETTUARE CALCOLI CON LIMITI, DERIVATE E INTEGRALI (INDEFINITI E DEFINITI).

AUTONOMIA DI GIUDIZIO:
SAPER INDIVIDUARE I METODI PIÙ APPROPRIATI PER RISOLVERE IN MANIERA EFFICIENTE UN PROBLEMA MATEMATICO; ESSERE CAPACI DI TROVARE DELLE OTTIMIZZAZIONI AL PROCESSO DI RISOLUZIONE DI UN PROBLEMA MATEMATICO.

ABILITÀ COMUNICATIVE:
SAPER LAVORARE IN GRUPPO; SAPER ESPORRE ORALMENTE UN ARGOMENTO LEGATO ALLA MATEMATICA.

CAPACITÀ DI APPRENDERE:
LO STUDENTE DOVRÀ SVILUPPARE QUELLE CAPACITÀ DI APPRENDIMENTO CHE GLI SARANNO NECESSARIE PER INTRAPRENDERE STUDI SUCCESSIVI CON UN ALTO GRADO DI AUTONOMIA E PORSI IN MANIERA CRITICA DI FRONTE A PROBLEMI PIÙ GENERALI.
Prerequisiti
PER IL PROFICUO RAGGIUNGIMENTO DEGLI OBIETTIVI PREFISSATI ALLO STUDENTE SONO RICHIESTI I SEGUENTI PREREQUISITI:
-CONOSCENZE RELATIVE ALL’ALGEBRA, CON PARTICOLARE RIFERIMENTO A: EQUAZIONI E DISEQUAZIONI ALGEBRICHE, LOGARITMICHE, ESPONENZIALI, TRIGONOMETRICHE, TRASCENDENTI,
-CONOSCENZE RELATIVE ALLA TRIGONOMETRIA, CON PARTICOLARE RIFERIMENTO ALLE FUNZIONI TRIGONOMETRICHE FONDAMENTALI
Contenuti
INSIEMI NUMERICI: INTRODUZIONE ALLA TEORIA DEGLI INSIEMI. OPERAZIONI SU SOTTOINSIEMI. INTRODUZIONE AI NUMERI REALI. ESTREMI DI UN INSIEME. INTERVALLI DI R. INTORNI, PUNTI DI ACCUMULAZIONE. INSIEMI CHIUSI E APERTI. INTRODUZIONE AI NUMERI COMPLESSI. OPERAZIONI SUI NUMERI COMPLESSI. POTENZE E FORMULA DI DE MOIVRE. RADICI N-ESIME.(ORE 5/3-)
FUNZIONI REALI: DEFINIZIONE. CAMPO DI ESISTENZA, CODOMINIO E GRAFICO. ESTREMI. FUNZIONI MONOTONE, COMPOSTE, INVERTIBILI. FUNZIONI ELEMENTARI: POTENZA, RADICE N-ESIMA, ESPONENZIALE, LOGARITMICA, POTENZA, TRIGONOMETRICHE E INVERSE.(ORE 4/2-)
RICHIAMI SU EQUAZIONI E DISEQUAZIONI: EQUAZIONI: I E II GRADO, BINOMIE, IRRAZIONALI, TRIGONOMETRICHE, ESPONENZIALI E LOGARITMICHE. SISTEMI. DISEQUAZIONI: I E II GRADO, FRATTE, IRRAZIONALI, TRIGONOMETRICHE, ESPONENZIALI E LOGARITMICHE. SISTEMI.(ORE 2/3-)
SUCCESSIONI NUMERICHE: DEFINIZIONI. SUCCESSIONI LIMITATE, CONVERGENTI, OSCILLANTI E DIVERGENTI. SUCCESSIONI MONOTONE. NUMERO DI NEPERO. CRITERIO DI CONVERGENZA DI CAUCHY.(ORE 2/2-)
LIMITI DI UNA FUNZIONE: DEFINIZIONE. LIMITE DESTRO E SINISTRO. TEOREMI DI UNICITÀ E CONFRONTO. OPERAZIONI E FORME INDETERMINATE. LIMITI NOTEVOLI.(ORE 5/3/-)
FUNZIONI CONTINUE: DEFINIZIONE. CONTINUITÀ E DISCONTINUITÀ. TEOREMI: WEIERSTRASS, ZERI, BOLZANO. CONTINUITÀ UNIFORME.(ORE 5/-/-)
DERIVATA DI UNA FUNZIONE: DEFINIZIONE. DERIVATE DESTRA E SINISTRA. SIGNIFICATO GEOMETRICO. DERIVABILITÀ E CONTINUITÀ. REGOLE DI DERIVAZIONE. DERIVATE DELLE FUNZIONI ELEMENTARI. DERIVATE DI FUNZIONE COMPOSTA E INVERSA. (ORE 5/3/-)
TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE: TEOREMI: ROLLE, CAUCHY, LAGRANGE E COROLLARI. TEOREMA DI DE L’HOSPITAL. CONDIZIONI PER MASSIMI E MINIMI RELATIVI. FORMULE DI TAYLOR E DI MAC-LAURIN.(ORE 4/3/-)
STUDIO DEL GRAFICO DI UNA FUNZIONE: ASINTOTI. MASSIMI E MINIMI RELATIVI. FUNZIONI CONCAVE E CONVESSE, FLESSI. GRAFICO.(ORE 6/8/-).
INTEGRAZIONE DI FUNZIONI DI UNA VARIABILE: DEFINIZIONE DI FUNZIONE PRIMITIVA E INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI. REGOLE E METODI DI INTEGRAZIONE. INTEGRALE DELLE FUNZIONI RAZIONALI FRATTE. INTEGRALE DEFINITO E SIGNIFICATO GEOMETRICO. TEOREMA DEL VALOR MEDIO. FUNZIONE INTEGRALE E TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE.(ORE 6/6-)
SERIE NUMERICHE: INTRODUZIONE ALLE SERIE NUMERICHE.

Metodi Didattici
L’INSEGNAMENTO CONTEMPLA LEZIONI TEORICHE, DURANTE LE QUALI SARANNO PRESENTATI GLI ARGOMENTI DEL CORSO MEDIANTE LEZIONI FRONTALI, ED ESERCITAZIONI IN AULA DURANTE LE QUALI SI FORNIRANNO I PRINCIPALI STRUMENTI NECESSARI PER LA RISOLUZIONE DI ESERCIZI RELATIVI AI CONTENUTI DELL’INSEGNAMENTO.
Verifica dell'apprendimento
LA PROVA DI ESAME È FINALIZZATA A VALUTARE:
•LA CONOSCENZA E LA COMPRENSIONE DEI CONCETTI PRESENTATI AL CORSO;
•LA PADRONANZA DEL LINGUAGGIO MATEMATICO NELLA PROVA SCRITTA ED ORALE;
•LA CAPACITÀ DI DIMOSTRARE TEOREMI;
•LA CAPACITÀ DI RISOLVERE ESERCIZI;
•LA CAPACITÀ DI INDIVIDUARE ED APPLICARE I METODI PIÙ APPROPRIATI ED EFFICIENTI NELLA RISOLUZIONE DI UN ESERCIZIO;
•LA CAPACITÀ DI APPLICARE LE CONOSCENZE ACQUISITE NELLA RISOLUZIONE DI ESERCIZI NON PRESENTATI DURANTE IL CORSO.
LA VALUTAZIONE PREVEDE UNA PROVA SCRITTA E UNA PROVA ORALE.
PROVA SCRITTA: LA PROVA SCRITTA CONSISTE NELLA RISOLUZIONE DI ESERCIZI TIPICI PRESENTATI AL CORSO. NEL CASO DI SUPERAMENTO DELLA PROVA SCRITTA, AD ESSA È ATTRIBUITA UNA VALUTAZIONE IN FASCE.
PROVA ORALE: TALE PROVA È PREVALENTEMENTE TESA AD ACCERTARE IL GRADO DI CONOSCENZA DI TUTTI GLI ARGOMENTI OGGETTO DEL CORSO, E VERTE SU DEFINIZIONI, ENUNCIATI E DIMOSTRAZIONE DI TEOREMI, RISOLUZIONE DI ESERCIZI.
VOTAZIONE FINALE: IL VOTO FINALE, ESPRESSO IN TRENTESIMI CON EVENTUALE LODE, È DETERMINATO PARTENDO DA QUELLO CONSEGUITO NELLA PROVA SCRITTA MODULANDOLO (NELLA NORMA) IN ECCESSO O IN DIFETTO, SULLA BASE DELLA PROVA ORALE.
Testi
P. MARCELLINI - C. SBORDONE, “ELEMENTI DI CALCOLO “, LIGUORI EDITORE
P. MARCELLINI - C. SBORDONE, “ANALISI MATEMATICA UNO “, LIGUORI EDITORE
P. MARCELLINI - C. SBORDONE, “ELEMENTI DI ANALISI MATEMATICA UNO “, LIGUORI EDITORE
ESERCIZI
P. MARCELLINI - C. SBORDONE, “ESERCITAZIONI DI MATEMATICA I “, LIGUORI EDITORE
C. D’APICE, R. MANZO, “VERSO L’ESAME DI MATEMATICA I”, CUES (2007).
G. ALBANO, C. D’APICE, S. SALERNO, LIMITI E DERIVATE, CUES (2002).
Altre Informazioni
L’INSEGNAMENTO È EROGATO IN PRESENZA CON FREQUENZA OBBLIGATORIA. LA LINGUA DI INSEGNAMENTO È L’ITALIANO.
  BETA VERSION Fonte dati ESSE3 [Ultima Sincronizzazione: 2019-03-11]