MECCANICA RAZIONALE

Michele CIARLETTA MECCANICA RAZIONALE

0612500007
DIPARTIMENTO DI INGEGNERIA CIVILE
CORSO DI LAUREA
INGEGNERIA CIVILE PER L'AMBIENTE ED IL TERRITORIO
2018/2019

OBBLIGATORIO
ANNO CORSO 2
ANNO ORDINAMENTO 2017
PRIMO SEMESTRE
CFUOREATTIVITÀ
11120LEZIONE
Obiettivi
IL CORSO HA COME SCOPO QUELLO DI FORNIRE E SVILUPPARE STRUMENTI UTILI PER UNA TRATTAZIONE MATEMATICA DEI PROBLEMI E DEI FENOMENI FISICI NELL’AMBITO DELLA MECCANICA CLASSICA.
IL CORSO SI PROPONE I SEGUENTI OBIETTIVI FORMATIVI:

1) CONOSCENZA E CAPACITÀ DI COMPRENSIONE.
LO STUDENTE DEVE CONOSCERE GLI ELEMENTI FONDAMENTALI DELLA CINEMATICA E LA DINAMICA DEL PUNTO E DEI SISTEMI MATERIALI SIA LIBERI CHE VINCOLATI.

2) CAPACITÀ DI APPLICARE CONOSCENZA E COMPRENSIONE
ACQUISIZIONE DI BUONE CAPACITÀ DI FORMULAZIONE E RISOLUZIONE DI EQUAZIONI DIFFERENZIALI CHE DESCRIVONO LA DINAMICA DEI SISTEMI MATERIALI (SISTEMI MATERIALI OPPORTUNAMENTE MODELLATI: PUNTO MATERIALE, CORPO RIGIDO CON ASSE FISSO, CORPO RIGIDO CON PUNTO FISSO, CORPO RIGIDO LIBERO, SISTEMI OLONOMI), ANCHE UTILIZZANDO I METODI DELLA MECCANICA ANALITICA.

3) AUTONOMIA DI GIUDIZIO
LO STUDENTE DOVRÀ SVILUPPARE QUELLE CAPACITÀ DI APPRENDIMENTO CHE GLI SARANNO NECESSARIE PER INTRAPRENDERE STUDI SUCCESSIVI CON UN ALTO GRADO DI AUTONOMIA E PORSI IN MANIERA CRITICA DI FRONTE A PROBLEMI PIÙ GENERALI

4) ABILITA' COMUNICATIVE
LO STUDENTE DEVE ACQUISIRE IL LINGUAGGIO SCIENTIFICO APPROPRIATO ALLA MATERIA IN OGGETTO
Prerequisiti
PER IL PROFICUO RAGGIUNGIMENTO DEGLI OBIETTIVI PREFISSATI, ALLO STUDENTE SONO RICHIESTE LE CONOSCENZE MATEMATICHE DI BASE, CON PARTICOLARE RIFERIMENTO AI CONCETTI ED ALLE TECNICHE RISOLUTIVE INERENTI LA TEORIA DELL’INTEGRAZIONE E LA RISOLUZIONE DI EQUAZIONI DIFFERENZIALI ORDINARIE. SONO ALTRESÌ RICHIESTE APPROFONDITE CONOSCENZE DELL’ALGEBRA VETTORIALE E DELLA TEORIA DELLE MATRICI.
LO STUDENTE NON PUÒ SOSTENERE MECCANICA RAZIONALE SE PRIMA NON HA SUPERATO MATEMATICA II
Contenuti
CALCOLO VETTORIALE (3/1/-):
RAPPRESENTAZIONE CARTESIANA DEI VETTORI E OPERAZIONI. FUNZIONI A VALORI VETTORIALI.

APPLICAZIONI GEOMETRICO-DIFFERENZIALI ALLE CURVE (3/-/-):
FORMULE DI FERNET.

VETTORI APPLICATI (8/3/-):
RISULTANTE E MOMENTO RISULTANTE DI UN SISTEMA DI VETTORI APPLICATI. ASSE CENTRALE. SISTEMA DI VETTORI APPLICATI EQUIVALENTI. SISTEMA DI VETTORI PIANI E PARALLELI.

CINEMATICA DEL PUNTO (4/2/-):
VELOCITÀ. ACCELERAZIONE. MOTI PIANI. MOTI CENTRALI. MOTO ARMONICO.

CINEMATICA DEI SISTEMI MATERIALI (8/1/-):
GRADI DI LIBERTÀ E COORDINATE LAGRANGIANE. SISTEMI OLONOMI. CINEMATICA DEI SISTEMI RIGIDI. ANGOLI DI EULERO. PARTICOLARI MOTI RIGIDI: MOTO TRASLATORIO, MOTO ROTATORIO E MOTO ROTOTRASLATORIO. FORMULE DI POISSON. TEOREMA DI MOZZI. ASSE ISTANTANEO DI ROTOTRASLAZIONE.

CINEMATICA DEI MOTI RELATIVI (4/1/-).

MOTI RIGIDI PIANI E TEOREMA DI CHASLES (1/-/-)

STATICA E DINAMICA DEL PUNTO MATERIALE LIBERO (6/5/-):
LAVORO DI UNA FORZA. FORZE CONSERVATIVE. TEOREMA DELLE FORZE VIVE PER UN SISTEMA MATERIALE LIBERO E CONSERVAZIONE DELL'ENERGIA MECCANICA. EQUAZIONI DIFFERENZIALI DEL MOTO DI UN PUNTO LIBERO. EQUAZIONI DIFFERENZIALI DEL MOTO DI UN PUNTO RISPETTO A DUE RIFERIMENTI NON INERZIALI (FORZE APPARENTI, FORZA PESO). STATICA DEL PUNTO MATERIALE LIBERO. OSCILLATORE ARMONICO, MOTO ARMONICO SMORZATO, RISONANZA.

STATICA E DINAMICA DEL PUNTO MATERIALE VINCOLATO (4/2/-):
EQUAZIONI DEL MOTO DI UN PUNTO VINCOLATO. STATICA DI UN PUNTO VINCOLATO. ATTRITO E POSIZIONI DI EQUILIBRIO. DINAMICA DEL PUNTO VINCOLATO AD UNA SUPERFICIE, MOTO SPONTANEO DI UN PUNTO SU UNA SUPERFICIE. DINAMICA DEL PUNTO VINCOLATO AD UNA CURVA. PENDOLO SEMPLICE.

GEOMETRIA DELLE MASSE (5/7/-):
BARICENTRO E PROPRIETÀ. SISTEMI PIANI: BARICENTRI E MOMENTI STATICI. RAGGI DI INERZIA. QUANTITÀ DI MOTO E MOMENTO DELLE QUANTITÀ DI MOTO. TEOREMA DI KOENIG. ENERGIA CINETICA E MOMENTI D’INERZIA. MODO DI VARIARE DEL MOMENTO DI INERZIA AL VARIARE DELLA RETTA: TEOREMA DI HUYGENS E ELLISSOIDE D’INERZIA. APPLICAZIONI.

TEOREMI GENERALI DELLA MECCANICA DEI SISTEMI MATERIALI (8/2/-):
EQUAZIONI CARDINALI DELLA DINAMICA. TEOREMA DEL MOTO DEL BARICENTRO. LAVORO DELLE FORZE INTERNE PER UN SISTEMA RIGIDO. TEOREMA DELLE FORZE VIVE E CONSERVAZIONE DELL'ENERGIA MECCANICA PER UN SISTEMA MATERIALE VINCOLATO.

STATICA DEL CORPO RIGIDO (4/4/-):
EQUAZIONI CARDINALI DELLA STATICA. CONDIZIONI GENERALI DI EQUILIBRIO DI UN CORPO RIGIDO. APPLICAZIONI PER UN CORPO RIGIDO LIBERO, CORPO RIGIDO CON UN PUNTO FISSO E CORPO RIGIDO CON UN ASSE FISSO. REAZIONI VINCOLARI ESPLICATE SU UN CORPO RIGIDO IN EQUILIBRIO. ATTRITO E POSIZIONI DI EQUILIBRIO. REAZIONI VINCOLARI IN CONDIZIONE DI EQUILIBRIO.

DINAMICA DEL CORPO RIGIDO (5/4/-):
MOTO DI UN CORPO RIGIDO CON UN ASSE FISSO PRIVO DI ATTRITO E CIMENTI VINCOLARI. MOTO DI UN CORPO RIGIDO CON UN PUNTO FISSO. MOTO DI UN CORPO RIGIDO LIBERO. MOTO ALLA POINSOT.

ELEMENTI DI MECCANICA ANALITICA (13/6/-):
SPOSTAMENTI VIRTUALIDI PER UN SISTEMA OLONOMO. LAVORO VIRTUALE. EQUAZIONE SIMBOLICA DELLA DINAMICA E PRINCIPIO DI D’ALEMBERT. EQUAZIONE SIMBOLICA DELLA STATICA E PRINCIPIO DEI LAVORI VIRTUALI. CONDIZIONI DI EQUILIBRIO PER UN SISTEMA OLONOMO. CALCOLO DELLE REAZIONI VINCOLARI TRAMITE IL PRINCIPIO DEI LAVORI VIRTUALI. SISTEMI OLONOMI SOLLECITATI DA FORZE CONSERVATIVE. EQUAZIONI DI LAGRANGE ED APPLICAZIONI. ENERGIA CINETICA DI UN SISTEMA OLONOMO E STUDIO DELLE EQUAZIONI DI LAGRANGE. TEOREMA DELLE FORZE VIVE PER UN SISTEMA OLONOMO A VINCOLI INDIPENDENTI DAL TEMPO. EQUAZIONI DI LAGRANGE PER UN SISTEMA CONSERVATIVO. SISTEMI LAGRANGIANI E LORO INTEGRALI PRIMI.

STABILITÀ E PICCOLE OSCILLAZIONI (4/2/-):
STABILITÀ, DEFINIZIONE DI STABILITÀ PER UN SISTEMA OLONOMO, PICCOLE OSCILLAZIONI INTORNO AD UNA POSIZIONE DI EQUILIBRIO STABILE.
Metodi Didattici
L’INSEGNAMENTO, DI 12 CFU, CONTEMPLA LEZIONI TEORICHE, DURANTE LE QUALI SARANNO PRESENTATI GLI ARGOMENTI DEL CORSO MEDIANTE LEZIONI FRONTALI ED ESERCITAZIONI IN AULA, DURANTE LE QUALI SI FORNIRANNO I PRINCIPALI STRUMENTI NECESSARI PER LA RISOLUZIONE DI ESERCIZI RELATIVI AI CONTENUTI DELL’INSEGNAMENTO TEORICO. E' PREVISTO L'OBBLIGO DI FREQUENZA PER ALMENO IL 70% DELLE ORE DI ATTIVITA' DIDATTICA
Verifica dell'apprendimento
L'ESAME È FINALIZZATO A VALUTARE LA CONOSCENZA E LA CAPACITÀ DI COMPRENDERE I CONCETTI ESPOSTI DURANTE LE LEZIONI E LA CAPACITÀ DI APPLICARE TALI CONOSCENZE E FORMULARE LE EQUAZIONI DIFFERENZIALI CHE DESCRIVONO LA DINAMICA DEI SISTEMI MATERIALI. L' ESAME E' SVOLTO AL TERMINE DELL'INSEGNAMENTO E SI ARTICOLA IN UNA PROVA SCRITTA SELETTIVA E IN UN COLLOQUIO ORALE. LA PROVA SCRITTA DURA 3 ORE E PROPONE ESERCIZI E DOMANDE A RISPOSTA APERTA. IL COLLOQUIO ORALE VALUTA LE CONOSCENZE ACQUISITE.
NELLA VALUTAZIONE FINALE, ESPRESSA IN TRENTESIMI, LA VALUTAZIONE DELLA PROVA SCRITTA PESA PER IL 40%, MENTRE IL COLLOQUIO PESA PER IL RESTANTE 60%.
NELLA VALUTAZIONE ORALE, AI FINI DELLE LODE SI TERRA' CONTO: 1. DELLA QUALITA' DELL'ESPOSIZIONE, IN TERMINI DI UTILIZZO DI LINGUAGGIO SCIENTIFICO APPROPRIATO,; 2. DELLA CAPACITA' DI CORRELAZIONE TRASVERSALE TRA I DIVERSI ARGOMENTI DEL CORSO E CON ALTRE DISCIPLINE; 3. DELL'AUTONOMIA DI GIUDIZIO.
Testi
S. CHIRITA, M. CIARLETTA, V. TIBULLO, MECCANICA RAZIONALE, ED. LIGUORI.
M. FABRIZIO, ELEMENTI DI MECCANICA CLASSICA, ED. ZANICHELLI.
F. STOPPELLI, APPUNTI DI MECCANICA RAZIONALE, LIGUORI ED
Altre Informazioni
-
  BETA VERSION Fonte dati ESSE3 [Ultima Sincronizzazione: 2019-10-21]