Antonio DI CRESCENZO | CALCOLO DELLE PROBABILITA' E STATISTICA MATEMATICA
Antonio DI CRESCENZO CALCOLO DELLE PROBABILITA' E STATISTICA MATEMATICA
cod. 0512100009
CALCOLO DELLE PROBABILITA' E STATISTICA MATEMATICA
0512100009 | |
DIPARTIMENTO DI INFORMATICA | |
CORSO DI LAUREA | |
INFORMATICA | |
2024/2025 |
OBBLIGATORIO | |
ANNO CORSO 2 | |
ANNO ORDINAMENTO 2017 | |
SECONDO SEMESTRE |
SSD | CFU | ORE | ATTIVITÀ | |
---|---|---|---|---|
MAT/06 | 4 | 32 | LEZIONE | |
MAT/06 | 2 | 16 | ESERCITAZIONE |
Obiettivi | |
---|---|
OBIETTIVO GENERALE: OBIETTIVO DEL CORSO È FORNIRE LE CONOSCENZE ED I METODI DI BASE DELLA PROBABILITÀ E DELLA STATISTICA MATEMATICA, NECESSARIE PER (I) LA COMPRENSIONE ANALITICA, LA RAPPRESENTAZIONE E LA MODELLIZZAZIONE DI FENOMENI ALEATORI, (II) LA GESTIONE, L’ANALISI E L’INTERPRETAZIONE DI DATI SPERIMENTALI LEGATI A FENOMENI ALEATORI DI NATURA INFORMATICA. CONOSCENZA E CAPACITÀ DI COMPRENSIONE: LO STUDENTE: - CONOSCERÀ GLI ARGOMENTI DI BASE DEL CALCOLO DELLE PROBABILITÀ E DELLA STATISTICA MATEMATICA; - SARÀ IN GRADO DI INDIVIDUARE UN MODELLO PROBABILISTICO E DI COMPRENDERNE LE PRINCIPALI CARATTERISTICHE. CAPACITÀ DI APPLICARE CONOSCENZA E COMPRENSIONE: LO STUDENTE SARÀ IN GRADO DI - UTILIZZARE UN RAGIONAMENTO INDUTTIVO E DEDUTTIVO NELL’AFFRONTARE PROBLEMI, SOPRATTUTTO DI NATURA INFORMATICA, COINVOLGENTI FENOMENI CASUALI; - SCHEMATIZZARE UN FENOMENO ALEATORIO IN TERMINI RIGOROSI; - IMPOSTARE UN PROBLEMA E RISOLVERLO UTILIZZANDO OPPORTUNI STRUMENTI DELLA PROBABILITÀ E DELLA STATISTICA MATEMATICA, CON PARTICOLARE RIFERIMENTO ALLA PROBABILITÀ DISCRETA, ALLE SUE BASI DEL CALCOLO COMBINATORIO, ALLE VARIABILI ALEATORIE (COMPRESE LE PRINCIPALI CARATTERISTICHE), AI TEOREMI LIMITE E ALLE LORO APPLICAZIONI STATISTICHE. AUTONOMIA DI GIUDIZIO: LO STUDENTE SARÀ IN GRADO DI - VALUTARE LA COERENZA DEL RAGIONAMENTO UTILIZZATO IN UNA DIMOSTRAZIONE/RISOLUZIONE DI UN PROBLEMA; - INDIVIDUARE IL PERCORSO PIÙ EFFICACE NELLA RISOLUZIONE DI UN PROBLEMA. ABILITÀ COMUNICATIVE: LO STUDENTE SARÀ IN GRADO DI - ACQUISIRE E SAPER COMUNICARE LE INFORMAZIONI RICAVATE DALL’ANALISI DI UN PROBLEMA; - RAPPRESENTARE MEDIANTE TABELLE ED ELABORAZIONE GRAFICHE I RISULTATI DELL’ANALISI DEI DATI. CAPACITÀ DI APPRENDIMENTO: LO STUDENTE SARÀ IN GRADO DI - APPROFONDIRE IN MODO AUTONOMO ULTERIORI COMPETENZE CON RIFERIMENTO ALLA CONSULTAZIONE DI MATERIALE BIBLIOGRAFICO, DI BANCHE DATI E ALTRE INFORMAZIONI IN RETE; - COMPRENDERE E INTERPRETARE PROBLEMI DI NATURA PROBABILISTICA/STATISTICA. |
Prerequisiti | |
---|---|
LO STUDENTE DEVE AVERE ACQUISITO CONOSCENZE DI BASE IN AMBITO MATEMATICO, COME ELEMENTI DI TEORIA DEGLI INSIEMI, STUDIO DI FUNZIONI, DERIVATE, INTEGRALI. |
Contenuti | |
---|---|
I PARTE (20 ORE DI CUI 12 DI LEZIONI FRONTALI RIGUARDANTI SVILUPPO DI ARGOMENTI TEORICI E 8 DI ESERCITAZIONE): ESPERIMENTI ALEATORI. SPAZIO CAMPIONARIO. PROBABILITÀ. SPAZIO DI PROBABILITÀ. PROBABILITÀ CONDIZIONATA. INDIPENDENZA. ELEMENTI DI CALCOLO COMBINATORIO. II PARTE (16 ORE DI CUI 12 DI LEZIONI FRONTALI RIGUARDANTI SVILUPPO DI ARGOMENTI TEORICI E 4 DI ESERCITAZIONE): VARIABILE ALEATORIA. FUNZIONE DI DISTRIBUZIONE. MEDIA, DEVIAZIONE STANDARD E VARIANZA. PRINCIPALI VARIABILI ALEATORIE DISCRETE E CONTINUE. III PARTE (8 ORE DI CUI 5 DI LEZIONI FRONTALI RIGUARDANTI SVILUPPO DI ARGOMENTI TEORICI E 3 DI ESERCITAZIONE): VARIABILI ALEATORIE DOPPIE DISCRETE. FUNZIONI DI PROBABILITÀ MARGINALI. FUNZIONI DI PROBABILITÀ CONDIZIONATE. INDIPENDENZA. COVARIANZA E CORRELAZIONE. VARIABILI ALEATORIE MULTIPLE. MOMENTI. DISUGUAGLIANZA DI MARKOV E CHEBYSHEV. LEGGE DEI GRANDI NUMERI. TEOREMA DI BERNOULLI. TEOREMA DEL LIMITE CENTRALE. IV PARTE (4 ORE DI CUI 3 DI LEZIONI FRONTALI RIGUARDANTI SVILUPPO DI ARGOMENTI TEORICI E 1 DI ESERCITAZIONE): CAMPIONAMENTO. POPOLAZIONE E CAMPIONE. INFERENZA STATISTICA. STIMA DEI PARAMETRI. STATISTICHE CAMPIONARIE. MEDIA E VARIANZA CAMPIONARIE. DISTRIBUZIONE CAMPIONARIA DELLA MEDIA. ORGANIZZAZIONE E DESCRIZIONE DEI DATI. TABELLE. GRAFICI DI FREQUENZE. ISTOGRAMMI. PERCENTILI CAMPIONARI. DATI BIVARIATI. COEFFICIENTE DI CORRELAZIONE CAMPIONARIO. ELEMENTI DI REGRESSIONE LINEARE. |
Metodi Didattici | |
---|---|
LEZIONI PER 48 ORE/6 CFU, RIPARTITE TRA LEZIONI FRONTALI PER 32 ORE/4 CFU (DEDICATE A SVILUPPO DI ARGOMENTI TEORICI, ANCHE CON RIFERIMENTO A PROBLEMI CONCRETI DI NATURA INFORMATICA) ED ESERCITAZIONI PER 16 ORE/2 CFU (DEDICATE AD ILLUSTRAZIONE DI PROBLEMI ED ESERCIZI RELATIVI AGLI ARGOMENTI AFFRONTATI NELLE LEZIONI FRONTALI). PER LA NATURA DELLA DISCIPLINA, CHE RICHIEDE CONTINUA INTERAZIONE TRA PRINCIPI TEORICI, ESEMPI ED APPLICAZIONI A PROBLEMI REALI, LE ATTIVITA' RIFERITE A LEZIONI FRONTALI ED ESERCITAZIONI SI SVOLGONO IN MODO INTEGRATO, ANCHE ALL'INTERNO DELLA STESSA ORA DI LEZIONE. |
Verifica dell'apprendimento | |
---|---|
LA PROVA DI ESAME È FINALIZZATA A VALUTARE NEL SUO COMPLESSO LE CONOSCENZE E LE CAPACITÀ DI COMPRENSIONE DEI CONCETTI PRESENTATI A LEZIONE, NONCHÉ LA CAPACITÀ DI APPLICARE TALI CONOSCENZE NELLA DESCRIZIONE DI DATI TRATTI DA FENOMENI ALEATORI, NELLA SCHEMATIZZAZIONE DI PROBLEMI SOGGETTI A CASUALITÀ, E NELLA RISOLUZIONE DI TALI PROBLEMI MEDIANTE STRUMENTI DI NATURA STATISTICO/PROBABILISTICO. LA PROVA D’ESAME CONSISTE IN UN COLLOQUIO ORALE (CON VOTO IN TRENTESIMI) FINALIZZATO A VALUTARE LE CONOSCENZE ACQUISITE SIA NEGLI ASPETTI TEORICI DELLA DISCIPLINA SIA NELLA CAPACITÀ DI RISOLVERE PROBLEMI. SONO PREVISTE DUE PROVE SCRITTE D’ESONERO NEL PERIODO DI SVOLGIMENTO DELLE LEZIONI. I DETTAGLI RELATIVI ALLE PROVE DI ESONERO ED I CRITERI DI PARTECIPAZIONE SONO COMUNICATI DAL DOCENTE ALL'INIZIO DELLE LEZIONI. |
Testi | |
---|---|
- ROSS S.M. (2013) CALCOLO DELLE PROBABILITÀ. III EDIZIONE. APOGEO. - ROSS S.M. (2013) PROBABILITÀ E STATISTICA PER L'INGEGNERIA E LE SCIENZE. 4A EDIZIONE. APOGEO. - DI CRESCENZO A., GIORNO V., NOBILE A.G. E RICCIARDI L.M. (2009) UN PRIMO CORSO IN PROBABILITÀ. PER SCIENZE PURE E APPLICATE. LIGUORI. - RICCIARDI L.M. E RINALDI S. (1994) ESERCIZI DI CALCOLO DELLE PROBABILITÀ. LIGUORI. - VERRI M. (2017) PROBABILITA' & STATISTICA. 600 ESERCIZI D'ESAME RISOLTI. ESCULAPIO. - JOHNSON R.A. (2007) PROBABILITÀ E STATISTICA PER INGEGNERIA E SCIENZE. PEARSON. |
Altre Informazioni | |
---|---|
MATERIALE DIDATTICO È RESO DISPONIBILE ATTRAVERSO LA PIATTAFORMA E-LEARNING DI TEAMS LA FREQUENZA DELLE LEZIONI E LO STUDIO REGOLARE NEL PERIODO DELLO SVOLGIMENTO DELLE LEZIONI SONO CONSIGLIATI. EMAIL: ADICRESCENZO@UNISA.IT |
BETA VERSION Fonte dati ESSE3 [Ultima Sincronizzazione: 2024-11-18]