Michele LA ROCCA | Publications
Michele LA ROCCA Publications
341678Asymmetric Binary Regression Models for Imbalanced Datasets: An Application to Students’ Churn
2024 | |
Contributo in volume (Capitolo o Saggio) | |
Asymmetric Binary Regression Models for Imbalanced Datasets: An Application to Students’ Churn. In Cristina Davino, Francesco Palumbo, Adalbert F. X. Wilhelm, Hans A. Kestler Recent Trends and Future Challenges in Learning from Data. ECDA 2022. Studies in Classification, Data Analysis, and Knowledge Organization Pag.63-74 Springer. ISBN:978-3-031-54468-2; 978-3-031-54467-5 | |
LA ROCCA, Michele; Niglio, Marcella; Restaino, Marialuisa | |
Digital Object Identifier (DOI): 10.1007/978-3-031-54468-2_6 Codice identificativo ISI: WOS:001317389000006 Codice identificativo SCOPUS: 2-s2.0-85202182737 | |
Show it in Product Database (IRIS) |
2024 | |
Contributo in volume (Capitolo o Saggio) | |
Evaluating Forecast Distributions in Neural Network Lee-Carter Type Model for Mortality Rate. In Autori Vari Mathematical and Statistical Methods for Actuarial Sciences and Finance218 Pag.218-223 Springer. ISBN:978-3-031-64272-2 | |
La Rocca, M.; Perna, C.; Sibillo, M. | |
Versione online | |
Digital Object Identifier (DOI): 10.1007/978-3-031-64273-9 Codice identificativo ISI: WOS:001299654100036 Codice identificativo SCOPUS: 2-s2.0-105001468497 | |
Show it in Product Database (IRIS) |
334579Evaluating Forecast Distributions in Neural Network HAR-Type Models for Range-Based Volatility
2024 | |
Contributo in volume (Capitolo o Saggio) | |
Evaluating Forecast Distributions in Neural Network HAR-Type Models for Range-Based Volatility. In L. Iliadis · I. Maglogiannis ·A. Papaleonidas · E. Pimenidis · C. Jayne Engineering Applications of Neural Networks. Communications in Computer and Information Science Pag.504-517 Springer Nature Switzerland. ISBN:978-3-031-62494-0 | |
Perna, Cira; LA ROCCA, Michele | |
Digital Object Identifier (DOI): 10.1007/978-3-031-62495-7_38 Codice identificativo ISI: WOS:001295254400038 Codice identificativo SCOPUS: 2-s2.0-85198975147 | |
Show it in Product Database (IRIS) |