GEOMETRIA II

Giovanni SPARANO GEOMETRIA II

0512300040
DIPARTIMENTO DI MATEMATICA
CORSO DI LAUREA
MATEMATICA
2021/2022

OBBLIGATORIO
ANNO CORSO 1
ANNO ORDINAMENTO 2018
SECONDO SEMESTRE
CFUOREATTIVITÀ
864LEZIONE


Obiettivi
QUESTO INSEGNAMENTO HA L'OBIETTIVO DI INTRODURRE GLI STUDENTI ALLA TEORIA DEGLI SPAZI VETTORIALI EUCLIDEI E A QUELLA DELLA GEOMETRIA AFFINE ED EUCLIDEA.



CONOSCENZA E CAPACITÀ DI COMPRENSIONE:
L'INSEGNAMENTO INTENDE FORNIRE AGLI STUDENTI UNA SOLIDA CONOSCENZA DI BASE DEGLI SPAZI VETTORIALI EUCLIDEI, DEGLI SPAZI AFFINI E DELLE APPLICAZIONI AFFINI ED ISOMETRICHE.

CAPACITÀ DI APPLICARE CONOSCENZA E COMPRENSIONE:
L'INSEGNAMENTO HA COME ULTERIORE OBIETTIVO QUELLO DI RENDERE LO STUDENTE CAPACE DI RISOLVERE PROBLEMI RIGUARDANTI GLI SPAZI VETTORIALI EUCLIDEI E GLI SPAZI AFFINI CON PARTICOLARE RIGUARDO AGLI SPAZI DI DIMENSIONE DUE E TRE.

Prerequisiti
È RICHIESTA LA CONOSCENZA DEGLI ARGOMENTI TRATTATI NEL CORSO DI GEOMETRIA I.
Contenuti
1.SPAZI VETTORIALI
DEFINIZIONI ED ESEMPI. DIPENDENZA E INDIPENDENZA LINEARE. BASI, LEMMA DI STEINITZ, DIMENSIONE. SOTTOSPAZI, SOMME E SOMME DIRETTE. FORMULA DI GRASSMANN. SISTEMI DI COORDINATE.

2. MATRICI, DETERMINANTI E SISTEMI LINEARI
MATRICI, OPERAZIONI TRA MATRICI. OPERAZIONI ELEMENTARI. MATRICI A SCALA E ALGORITMO DI GAUSS-JORDAN, RANGO. PERMUTAZIONI, DETERMINANTI. TEOREMA DI LAPLACE. TEOREMA DEGLI
ORLATI. TEOREMA DI BINET. MATRICI INVERTIBILI, CALCOLO DELL'INVERSA DI UNA MATRICE. SISTEMI DI EQUAZIONI LINEARI, RISOLUZIONE DEI SISTEMI DI EQUAZIONI LINEARI A SCALA. RIDUZIONE DI UN SISTEMA DI EQUAZIONI LINEARI COMPATIBILE AD UN SISTEMA A SCALA. TEOREMA DI ROUCHÉ-CAPELLI. TEOREMA DI CRAMER.

3. APPLICAZIONI LINEARI
DEFINIZIONE, NUCLEO E IMMAGINE. TEOREMA DELL’ESTENSIONE LINEARE. TEOREMA DEL NUCLEO E DELL’IMMAGINE. RAPPRESENTAZIONE DI UN’APPLICAZIONE LINEARE. RANGO DI UN’APPLICAZIONE LINEARE. RAPPRESENTAZIONE PARAMETRICA E CARTESIANA DI SOTTOSPAZI. CAMBIAMENTI DI RIFERIMENTO. GRUPPO LINEARE. ORIENTAMENTO. SPAZI QUOZIENTE.

4. FORME LINEARI E BILINEARI
SPAZIO DUALE DI UNO SPAZIO VETTORIALE, BASI DUALI, ANNULLATORE DI UN SOTTOSPAZIO. APPLICAZIONI BILINEARI, FORME BILINEARI SIMMETRICHE ED ANTISIMMETRICHE. RAPPRESENTAZIONE DELLE FORME BILINEARI, TEOREMA DELL’ESTENSIONE LINEARE, CAMBIO DI RIFERIMENTO. FORME BILINEARI DEGENERI. SOTTOSPAZI ANNULLATORI. FORME QUADRATICHE. ORTOGONALITÀ TRA VETTORI E SOTTOSPAZI. BASI ORTOGONALI, ESISTENZA DI BASI ORTOGONALI. FORMA CANONICA DI UNA FORMA BILINEARE: IL TEOREMA DI SYLVESTER.

5.IL PROBLEMA DELLA DIAGONALIZZAZIONE
DIAGONALIZZAZIONE DI UN ENDOMORFISMO. AUTOVALORI, AUTOVETTORI, AUTOSPAZI. DETERMINAZIONE DEGLI AUTOVALORI, POLINOMIO CARATTERISTICO, MOLTEPLICITÀ ALGEBRICA E GEOMETRICA. TEOREMI DI DIAGONALIZZABILITÀ. DIAGONALIZZAZIONE DI ENDOMORFISMI SU SPAZI VETTORIALI EUCLIDEI. DIAGONALIZZABILITÀ ORTOGONALE. ENDOMORFISMI SIMMETRICI, MATRICI SIMMETRICHE.
AUTOVALORI DI UN ENDOMORFISMO SIMMETRICO. ENDOMORFISMI ORTOGONALI E LORO RAPPRESENTAZIONI. MATRICI ORTOGONALI. AUTOVALORI DI UN ENDOMORFISMO ORTOGONALE. ENDOMORFISMI ORTOGONALMENTE DIAGONALIZZABILI.IL TEOREMA SPETTRALE.
Metodi Didattici
64 ORE DI LEZIONI FRONTALI SUDDIVISE TRA LEZIONI DI CARATTERE TEORICO ED ESERCITATIVO.
Verifica dell'apprendimento
LA PROVA DI ESAME È FINALIZZATA A VALUTARE LA CONOSCENZA E LA CAPACITÀ DI COMPRENSIONE DEI CONCETTI PRESENTATI A LEZIONE, NONCHE' LA CAPACITÀ DI APPLICARE TALI CONOSCENZE NELLA SOLUZIONE DI SEMPLICI PROBLEMI.
LA PROVA D’ESAME SI ARTICOLA IN UNA PROVA SCRITTA SELETTIVA ED UN COLLOQUIO ORALE. LA PROVA SCRITTA PREVEDE DUE ESERCIZI FINALIZZATI A VERIFICARE LE CAPACITA’ DELLO STUDENTE DI APPLICARE LE METODOLOGIE RELATIVE AGLI SPAZI VETTORIALI EUCLIDEI, ALLA DIAGONALIZZAZIONE DEGLI ENDOMORFISMI E ALLA GEOMETRIA AFFINE. CON IL COLLOQUIO ORALE SONO VALUTATE LE CONOSCENZE ACQUISITE IN MERITO ALLA TEORIA DEGLI SPAZI VETTORIALI EUCLIDEI, ALLA DIAGONALIZZAZIONE DEGLI ENDOMORFISMI E ALLA TEORIA DEGLI SPAZI AFFINI.
LA VALUTAZIONE FINALE E’ ESPRESSA IN TRENTESIMI. LA PROVA SCRITTA SE SUPERATA DA’ ACCESSO ALLA PROVA ORALE LA QUALE DETERMINA PER INTERO IL VOTO FINALE. IL PUNTEGGIO MINIMO NELLA PROVA ORALE PREVEDE LA CONOSCENZA DEI CONCETTI FONDAMENTALI NEGLI ARGOMENTI MENZIONATI PIU SOPRA. IL VOTO MASSIMO E’ RAGGIUNTO QUANDO LO STUDENTE DIMOSTRA PADRONANZA NEL DISCUTERE TALI ARGOMENTI.
Testi
R. ESPOSITO, A. RUSSO, LEZIONI DI GEOMETRIA, PARTE PRIMA, LIGUORI.
E. SERNESI, GEOMETRIA 1, BOLLATI BORINGHIERI.
S. LIPSCHUTZ, ALGEBRA LINEARE MCGRAW-HILL.
Altre Informazioni
EMAIL: sparano@unisa.it
  BETA VERSION Fonte dati ESSE3 [Ultima Sincronizzazione: 2022-11-21]