Marcella NIGLIO | Publications
Marcella NIGLIO Publications
315782Testing spatial dynamic panel data models with heterogeneous spatial and regression coefficients
2024 | |
Articolo in rivista | |
Testing spatial dynamic panel data models with heterogeneous spatial and regression coefficients JOURNAL OF TIME SERIES ANALYSIS. Vol. 45. Pag.771-799 ISSN:0143-9782. | |
Giordano, Francesco; Niglio, Marcella; Parrella, Maria Lucia | |
Digital Object Identifier (DOI): 10.1111/jtsa.12738 Codice identificativo SCOPUS: 2-s2.0-85186546995 | |
Show it in Product Database (IRIS) |
2024 | |
Contributo in Atti di convegno | |
Link selection in binary regression models with the Model Confidence Set. In: New perspectives on Statistics and Data Science - Proceedings of the Statistics and Data Science 2024 Conference Palermo: Università degli Studi di Palermo Pag.15-22 ISBN:978-88-5509-645-4 | |
Statistics and Data Science 2024 Conference Palermo Aprile 2024 | |
LA ROCCA, Michele; Niglio, Marcella; Restaino, Marialuisa | |
Show it in Product Database (IRIS) |
2024 | |
Contributo in volume (Capitolo o Saggio) | |
Variable Selection and Asymmetric Links to Predict Credit Card Fraud. In Mathematical and Statistical Methods for Actuarial Sciences and Finance Pag.198-204 Springer. ISBN:9783031642722 | |
Giordano, Francesco; LA ROCCA, Michele; Niglio, Marcella; Restaino, Marialuisa | |
Versione online | |
Digital Object Identifier (DOI): 10.1007/978-3-031-64273-9_33 | |
Show it in Product Database (IRIS) |
2024 | |
Contributo in volume (Capitolo o Saggio) | |
Clustering and Testing Financial Asset Returns Using the Spatial Dynamic Panel Data Model. In Mathematical and Statistical Methods for Actuarial Sciences and Finance Pag.160-166 ISBN:9783031642722; 9783031642739 | |
Feo, Giuseppe; Giordano, Francesco; Milito, Sara; Niglio, Marcella; Parrella, Maria Lucia | |
Digital Object Identifier (DOI): 10.1007/978-3-031-64273-9_27 | |
Show it in Product Database (IRIS) |
341678Asymmetric Binary Regression Models for Imbalanced Datasets: An Application to Students’ Churn
2024 | |
Contributo in volume (Capitolo o Saggio) | |
Asymmetric Binary Regression Models for Imbalanced Datasets: An Application to Students’ Churn. In Cristina Davino, Francesco Palumbo, Adalbert F. X. Wilhelm, Hans A. Kestler Recent Trends and Future Challenges in Learning from Data. ECDA 2022. Studies in Classification, Data Analysis, and Knowledge Organization Pag.63-74 Springer. ISBN:978-3-031-54468-2; 978-3-031-54467-5 | |
LA ROCCA, Michele; Niglio, Marcella; Restaino, Marialuisa | |
Digital Object Identifier (DOI): 10.1007/978-3-031-54468-2_6 Codice identificativo SCOPUS: 2-s2.0-85202182737 | |
Show it in Product Database (IRIS) |