NATURAL COMPUTATION

Antonio DELLA CIOPPA NATURAL COMPUTATION

0622700061
DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE ED ELETTRICA E MATEMATICA APPLICATA
CORSO DI LAUREA MAGISTRALE
INGEGNERIA INFORMATICA
2019/2020



ANNO CORSO 2
ANNO ORDINAMENTO 2017
SECONDO SEMESTRE
CFUOREATTIVITÀ
324LEZIONE
324ESERCITAZIONE
Obiettivi
CONOSCENZA DEI MODELLI E TECNICHE COMPUTAZIONALI CHE SI ISPIRANO AI SISTEMI NATURALI PER LA RISOLUZIONE DI PROBLEMI COMPLESSI E CAPACITA' DI ANALISI CRITICA DEI DIVERSI APPROCCI PRESENTATI E DISCUSSI NELLE LEZIONI.

RISULTATI DI APPRENDIMENTO ATTESI

CONOSCENZE E CAPACITÀ DI COMPRENSIONE
CONOSCENZA DEGLI ASPETTI FONDAMENTALI DEI MECCANISMI DI EVOLUZIONE BIOLOGICA E DEI PRINCIPI CHE REGOLANO LA NEUROFISIOLOGIA DEL CERVELLO UMANO. COMPRENSIONE DEI RELATIVI MODELLI COMPUTAZIONALI E CONOSCENZA DEI METODI DI IMPLEMENTAZIONE. CONOSCENZA DELLE TECNICHE PER LA VALUTAZIONE DELLE PRESTAZIONI. COMPRENSIONE DELLE MOTIVAZIONI DELLE “BEST PRACTICE” NELLA SCELTA DEL MODELLO DA UTILIZZARE IN FUNZIONE DEGLI SPECIFICI AMBITI APPLICATIVI.

CONOSCENZA E CAPACITÀ DI COMPRENSIONE APPLICATE
SAPER VALUTARE L’IMPATTO DEI DIVERSI MODELLI COMPUTAZIONALI SULLE STIMA DELLE PRESTAZIONI, SAPER UTILIZZARE LE “BEST PRACTICE” PER LA CONFIGURAZIONE DEI PARAMETRI DEL MODELLO NELLA SOLUZIONE DI PROBLEMI DI OTTIMIZZAZIONE E APPRENDIMENTO AUTOMATICO.

AUTONOMIA DI GIUDIZIO
SAPER SCEGLIERE ED INTEGRARE I MODELLI COMPUTAZIONALI PROPOSTI NEL CORSO PER OTTENERE SOLUZIONI DI ELEVATA’ QUALITA’ IN PROBLEMI COMPLESSI. SAPER INDIVIDUARE I DATI DI PROVA, GLI INDICI E I METODI DI MISURA PER FORNIRE UNA STIMA ATTENDIBILE DELLE PRESTAZIONI DELLE DIVERSE SOLUZIONI. SAPER VALUTARE IL RAPPORTO COSTO/PRESTAZIONI DELLE SOLUZIONI IPOTIZZATE.

ABILITÀ COMUNICATIVE
SAPER LAVORARE IN GRUPPO, DOCUMENTARE IL LAVORO SVOLTO IN FORMA SCRITTA E COMUNICARE ORALMENTE I RISULTATI DELLA PROPRIA ATTIVITA’.

CAPACITÀ DI APPRENDERE
SAPER ACQUISIRE CONOSCENZE IN DIVERSI AMBITI DISCIPLINARI PER AFFRONTARE LA COMPLESSITA’ ATTRAVERSO L’USO INTEGRATO DI MODELLI COMPUTAZIONALI E SAPER INDIVIDUARE I CRITERI PER SCEGLIERE I MODELLI DA UTILIZZARE NELLE SPECIFICHE APPLICAZIONI.

Prerequisiti
ORGANIZZAZIONE DI UN SISTEMA DI ELABORAZIONE, PARAMETRI PRESTAZIONALI DELLE UNITA’ COMPONENTI, ALGORITMI E STRUTTURE DATI AVANZATE.
Contenuti
INTRODUZIONE AL CORSO (LEZIONI 2H - ESERCITAZIONI 0H)
IL PARADIGMA DELLA COMPUTAZIONE NATURALE - CONCETTI FONDAMENTALI: AGENTE, AUTONOMIA, INTERATTIVITA’, VALUTAZIONE E FEEDBACK, APPRENDIMENTO

COMPUTAZIONE EVOLUTIVA (LEZIONI 6H - ESERCITAZIONI 2H)
FONDAMENTI DI BIOLOGIA EVOLUTIVA: SELEZIONE, RICOMBINAZIONE E MUTAZIONE – LA METAFORA COMPUTAZIONALE – ALGORITMI GENETICI, ALGORITMI EVOLUTIVI E GENETIC PROGRAMMING

SISTEMI IMMUNITARI (LEZIONI 6H - ESERCITAZIONI 2H)
FONDAMENTI DI IMMUNOLOGIA: ANTIGENI E ANTICORPI – LA METAFORA COMPUTAZIONALE – SISTEMI IMMUNITARI ARTIFICIALI

RETI NEURALI (LEZIONI 6H - ESERCITAZIONI 2H)
FONDAMENTI DI NEUROFISIOLOGIA – LA METAFORA COMPUTAZIONALE – MODELLI DI NEURONI – RETI NEURALI
SISTEMI DI RETI NEURALI (LEZIONI 8H - ESERCITAZIONI 2H)
FONDAMENTI DI NEUROSCIENZE – LA METAFORA COMPUTAZIONALE – MODELLI DI STRUTTURE CEREBRALI – INTEGRAZIONE DI MODELLI

PROGETTO FINALE (LEZIONI 0H - LABORATORIO 12H)
PROGETTAZIONE, IMPLEMENTAZIONE E VALUTAZIONE DELLE PRESTAZIONI DELLA SOLUZIONE PROPOSTA AL PROGETTO ASSEGNATO
Metodi Didattici
L’INSEGNAMENTO CONTEMPLA LEZIONI TEORICHE ED ESERCITAZIONI IN AULA. NELLE ESERCITAZIONI IN AULA VIENE ASSEGNATO AGLI STUDENTI, DIVISI PER GRUPPI DI LAVORO, UN PROGETTO DA SVOLGERE E VENGONO DISCUSSI DI VOLTA IN VOLTA GLI ASPETTI APPLICATIVI DEI MODELLI PRESENTATI. NELLE ATTIVITA’ DI LABORATORIO GLI STUDENTI SONO DIVISI IN GRUPPI, ED OGNI GRUPPO DEVE PROGETTARE E IMPLEMENTARE UNA SOLUZIONE DI UN PROBLEMA SCELTO TRA QUELLI PRESENTATI DURANTE LE ESERCITAZIONI IN AULA O PROPOSTO DAL GRUPPO STESSO.
Verifica dell'apprendimento
LA VALUTAZIONE DEL RAGGIUNGIMENTO DEGLI OBIETTIVI PREFISSATI AVVIENE MEDIANTE UN COLLOQUIO ORALE SUGLI ARGOMENTI DEL CORSO NON DIRETTAMENTE TRATTATI NEL PROGETTO E LA PRESENTAZIONE DELL’ELABORATO DI PROGETTO SVOLTO IN LABORATORIO. LA VALUTAZIONE SI OTTIENE DALLA SOMMA PESATA DEL PROGETTO (40%), DELLA PRESENTAZIONE (20%) E DEL COLLOQUIO (40%).
Testi
TESTO DI RIFERIMENTO
LEANDRO NUNES DE CASTRO - FUNDAMENTALS OF NATURAL COMPUTING,CHAPMAN & HALL/CRC; 1 EDITION (JUNE 2, 2006)
ULTERIORE MATERIALE DIDATTICO SARA' RESO DISPONIBILE SUL SITO WEB DEL CORSO
TESTO DI CONSULTAZIONE
DANA H. BALLARD, BRAIN COMPUTATION AS HIERARCHICAL ABSTRACTION, MIT PRESS, 2015
Altre Informazioni
L'INSEGNAMENTO E' IMPARTITO IN INGLESE.
  BETA VERSION Fonte dati ESSE3 [Ultima Sincronizzazione: 2021-02-19]