ALESSANDRA MEOLI | Curriculum
ALESSANDRA MEOLI Curriculum
Current position:
Fixed-term assistant professor (RTD-A), Department of Mathematics, University of Salerno.
Previously:
September 2021- June 2022: Research fellow (Incarico di lavoro autonomo), Department of Mathematics, University of Salerno. Project title: “Attività di ricerca per costruzione e analisi di processi aleatori, quali nuove varianti del processo del telegrafo governate anche da equazioni frazionarie, ed applicazioni a problemi di evoluzione dal comportamento alternato”, within the PRIN 2017 - STOCHASTIC MODELS FOR COMPLEX SYSTEMS.
September 2018 - September 2021: Research fellow (Assegnista di ricerca), Department of Mathematics, University of Salerno. Project title: “Sistemi in evoluzione stocastica: modelli, metodi e applicazioni”.
Education:
July 2017: Phd in Mathematics, Physics and Applications (XXIX cicle), Department of Mathematics, University of Salerno and University of Campania “Luigi Vanvitelli” (ex Second University of Naples).
August 2016: Academic Guest in the group of prof. Niko Beerenwinkel, Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich.
January 2013: Master's degree in Mathematics, - LM40, Università degli Studi di Salerno.
November 2010: Bachelor's degree in Mathematics, - L35, Università degli Studi di Salerno.
Referee activity of research articles for the following journals: Mathematics, Modern Stochastics: Theory and Applications, Journal of Mathematics, Journal of Applied Probability, Journal of Inequalities and Applications.
Member of the following scientific societies:
- Gruppo Nazionale per il Calcolo Scientifico (GNCS) of Istituto Nazionale di Alta Matematica (INDAM);
- Unione Matematica Italiana (UMI);
- UMI - PRISMA (PRobability In Statistics, Mathematics and Applications) group. Specifically, member of Commissione Insegnamento;
- UMI - Licei Matematici group.
She has mainly carried out research on probability theory and fractional calculus, with an emphasis on stochastic processes, reliability theory and survival analysis.